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Abstract-Hill functions which are constructed on the basis of Legendre polynomials are used
as coordinate functions to solve two-dimensional plate problems. In order to effectively handle
various boundary conditions and without introducing additional equations to the original
system of equations, the method of artificial parameters is employed for this purpose.
Illustrative examples are performed and numerical results obtained are compared very nicely
with theoretical solutions in the literature.

INTRODUCTION

In application of the Rayleigh-Ritz method to obtain numerical solutions for given
problems, important points are on the selection of coordinate functions and on the treat
ment of boundary conditions. The selection of coordinate functions should be such that
they must be able to provide good accuracy of solutions and also to make the evaluation of
matrix elements of system equations relatively easier ~ various boundaries should be handled
with ease regardless of which types of coordinate functions are employed.

In this paper, a particular type of function-hill functions[l-4]-is used as coordinate
function and a powerful method, namely, the method of artificial parameters, is utilized to
deal with various boundary conditions. The functions in their given domains are first
divided into a number of portions and the functions in each portion are then contsructed
on the local coordinate system on the basis of Legendre polynomials. The advantages of
using these functions are that evaluation of stiffness matrix elements of system equations
will simply turn out to be some kind of multiplication of coefficients of hill functions and
their corresponding derivatives, and that good accuracy of numerical results is generally
obtained.

Applications of hill functions to one-dimensional problems have been reported in Refs.
[1, 5]. In this paper, these functions are, to the knowledge of the author, for the first time
applied to solve two-dimensional problems.

RA YLEIGH-RlTZ METHOD

For the sake of completeness and the use in the following sections, key equations involved
in the Rayleigh-Ritz method are presented in this section.

Suppose there exists a sequence Yl, Y2' ... of admissible functions in the variational
problem such that

(1)

t The research reported in here was supported by the Office of Naval Research (Contract NR 064-452).
:I: Research Assistant Professor.
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where d is the lower bound of the functional F(y). The Rayleigh-Ritz method is a recipe for
the construction of such a sequence by choosing an arbitrary system of coordinate functions,
WI' W2, ... , with the property that any linear combination

(2)

is admissible in the variational problem, and that the solution function y and its relevant
derivatives may be approximated with any degree of accuracy by equation (2) and its
corresponding derivatives, respectively.

If the problem under consideration, F(y), is a quadratic functional, then the values Ci can
be determined by n linear simultaneous equations

i = 1,2, ... , n. (3)

COORDINATE FUNCTIONS-HILL FUNCTIONS

Some finite element models called" hill functions" have recently been developed in the
applied mathematics community[I-4]. These models, which can hardly satisfy given bound
ary conditions without special considerations but are quite economic when used in numerical
computation, are utilized as coordinate functions in this paper.

The construction of hill functions has been described in fair detail in Refs. [I, 2], here
only an outline of the equations is given:

"
"¢(x) = L "¢j(~)' -n12 s x S nl2

j~ I

"
"¢}~) = I "exi.jPi(~)' -1/2 S ~ S 112

i= 1

(4a)

(4b)

where "¢(x) denotes the hill function of order n; x and ~ represent the global and local
coordinate systems, respectively.

The graphical representation of equations (4) are sketched for n = 4 and S in Fig. l.
From this figure, it is noted that the entire domain of "¢(x), -n12 s x S n12, is divided into
n even intervals, and in each interval a local coordinate system (- 1/2 S ~ S 1/2) is set up
having the origin at the interval center. Thus, "¢(x) can be taken as a sum of n portions,
equation (4a), and each portion of this function is represented in the local coordinate system
by a Fourier series expansion in terms of Legendre polynomials Pi(O (with PI(~) = I),
equation (4b) ("exi,j in this equation are coefficient constants).

Derivative expressions of hill functions may also be given as follows:

"¢<t>cO = 1l-1¢ik-l)m, "¢~k)m = _"-1¢~k_-Il)m,

"¢jklm="-I¢jk-llm_"-I¢jk_-/lm for j=2, ... ,n-l,

or

"cjJjk1m =Jo (_I)i e)"-k¢j-i(O

(k = 1, ... , n - 2; j = I, ... , n; 1 S j - is n - k).

(Sa)
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x - global coordinate
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n-k
n¢jk)(~) = I nW}Pi(~)'

i= 1

j = 1,2, ... , n. (5b)

where the superscript (k) denotes the order of derivatives. The coefficients nb\~} can be
obtained in terms of n-kai,j through equation (5a).

The numerical values of nai,j with n ranging from 1 to 4 is given in Table 1; the hill
functions corresponding to these values are plotted in Fig. 2. Incidentally, a computer
program has been developed computing nai,j and nb\~} up to any order as desired.

Table I.t nat,J in equations (4) (n = I, ... , 4)

n j i = 1 i= 2 i= 3 i= 4

1 I 1
2 1 0·5 0·5
3 I 0·1667 0·25 0·08333

2 0·6667 0 -0'1666
4 I 0·04167 0·075 0·04167 0·008333

2 0'4583 0'275 -0'04167 -0'025

t Because of symmetry of hill functions about x = 0, only
symmetric parts of coefficients are given; for more accurate
values, a double precision version may be used in the com
puter code.
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PROBLEM FORMULATION

The governing differential equation for rectangular plate problems (Fig. 3) has been
derived in great detail in Ref.[6] and may be given as follows:

a4 w a4 w a4 w q
-+2 +-=- (6)ax4 ax2 ay2 ay4 D

in which w is the normal displacement function, q is the distributed loading, and

Et3

D = 12(1 _ v2 ) (7)

where E is the modulus of elasticity of the material, v is Poisson's ratio and t is the thickness
of the plate.
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The entire problem description may be completed by further providing with boundary
conditions. In general, boundary conditions associated with each edge may be expressed in
the form of

<l>l(W, Wx ' Wy , ••• ) = 0

<l>2(W, Wx ' Wy , ••• ) = 0
(8)

where ( )x = o( )/ox. For a rectangular plate, there are four edges and hence a total of eight
boundary conditions in the form of equations (8) need be considered.

In accordance with the Rayleigh-Ritz method, the entire problem must be cast into
energy form; the energy expression associated with equation (6) is given in Ref. [6] by

(9)

If coordinate functions are chosen such that boundary conditions on four edges have been
automatically satisfied, then an application of the Rayleigh-Ritz method to equation (9) will
yield a desired result. However, for arbitrary chosen coordinate functions, such as the hill
functions as described in the previous section, these boundary conditions will generally
not be accommodated, and a special consideration to comply with these conditions becomes
necessary.

The particular method elected here to deal with boundary conditions is the method of
artificial parameters [1 , 7]. According to this method, two types of artificial (parameter)
springs, {J and y, are intentionally introduced at each edge of the plate. The energy contribu
tions due to these parameters are added to equation (9) to form the total energy for the
entire system:

By applying variational principle to equation (10), it can be shown for each edge of the
plate: (a) if {J, y = 0 are assigned for an edge, t~is will yield a free boundary condition~(b) if
P= 00 and y = 0, this will give a simply supported condition; (c) if {J, y = 00, this will
produce a clamped edge condition. For a detail description of how the method of artificial
parameters relates to different types of boundary conditions, readers should consult Refs.
[1, 7].

In numerical analysis, {J and y cannot be increased to infinitive and, in fact, need be
increased only to be large enough to approximate the fixity. In this connection, an observa
tion based on results obtained by using varying values of {J and y tends to indicate that
results are not so sensitive to the magnitude of these values. This observation is also evi
denced from results obtained for one-dimensional problems[l].

The propeF values for {J and y can easily be determined from experimenting on some
simple cases and then using these values whenever they are required for all other calcula
tions. As to the merits of using this particular method to handle various boundary conditions,
particularly when compared with using other popular methods, an assessment will be given
in the final section.
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SYSTEM EQUATIONS

In this paper, hill functions as presented in the previous section are used as coordinate
functions for all calculations. In order to fit dimension requirements as specified in hill
functions, following nondimensional quantities are introduced:

w =hw,

hI = a/m l ,

X =hIx,

h2 = b/m 2 ,

y = h2 y
h = (hi + h2 )/2

(11)

in which m i and m2 are the total numbers of intervals, and hI and h2 are their corresponding
sizes of the intervals in x and y directions, respectively (Fig. 4). For simplicity in presenta
tion, we discuss only the case of

(12)

while it is recognized that there should be no more difficulty for the case ofhI #0 h2 although
some minor complexity is expected.
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Now, in the light of the Rayleigh-Ritz method, the nondimensional displacement function
wcan be expressed in terms of hill function of order n as

(13)

where Ckl is undetermined constant and (k, I) denotes a two-dimensional point as shown in
Fig. 4. For easier graphical representation, a one-dimensional example,

w(x) = I c/¢(x - k)

is shown in Fig. 5 for hill function of order n = 4 and a total mesh number of m = 5.

(14)
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Substitution of equation (13) into (10) yields a quadratic functional in Ckl and may be put
into matrix form of

F = tlcJ([K] + [K']){c} - lcj{q} (15)

where [K] and [K'] are the stiffness matrix in connection with the system strain energy
(equation (9) except the last term) and the matrix related to energy contributions from
artificial springs, respectively ~ {q} is a column matrix of loading terms. It is noticed that both
[K] and [K'] are symmetric matrices.

An application of equation (3) to equation (15) with variation of {c} yields a system of
equations:

([K] + [K']){c} = {q}

For the purpose of references, a generic element of [K] and {q} may be given here:

(16)

KklSI = ["cf>"(x - k)"cf>(y - I), "cf>"(x - s)"cf>(Y - t)]
+ ["cf>(x - k)"cf>"(Y - I), "cf>(x - s)"cf>"(y - t)]
+ v["cf>"(x - k)"cf>(Y - I), "cf>(x - s)"cf>"(y - t)]
+ v["cf>(x - k)"cf>"(y - I), "cf>"(x - s)"cf>(y - t)]
+ 2(1 - v)["cf>'(x - k)"cf>'(Y - I), "cf>'(x - s)"cf>'(y - t)] (l7a)

h3

qkl = D [q(x, ji), "cf>(x - k)"cf>(ji -I)] (l7b)

where

(18)
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For example (see Fig. 4),
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[n¢"(x - kt¢(y - I), nq/'(X - st¢(y - t)]k=2, 1=2; s= 3; 1=4; n=4

= fm
2

n¢(y _ It¢(y - t) dy r' n¢,,(X - k)n¢,,(x - s) dx
a a

n=4 1
- " __ (4a 4a + 4a 4a )- 1... 2' 1 i,3 i,1 ;,4 ;,2

i=1 1-

(19)

(20)

It should be mentioned here that, in arriving at the final expression for this integral, the
evaluation is performed interval by interval, utilizing the orthogonality of the Legendre
polynomials in (-1/2, 1/2), i.e.

J
1

/
2

P;(~)Pj(~) d~ = {I/(2i - I), ~ =!
-1/2 0, I # j.

It may also be noted that evaluation of equation (17b) does not enjoy such kind of simpli
city and its value must be obtained numerically as follows: equation (17b) is first taken as a
sum of integrals in each interval, and integrals in each interval are calculated by further
breaking each interval into a number of subintervals and then employing usual numerical
integration schemes.

NUMERICAL RESULTS

Three square plate problems with different combinations of boundary conditions are
solved using equations (16) as system equations. In all calculations, a total number of
meshes m1 = m2 = 6 and the hill function of order n = 4 are adopted (Fig. 4). Results are
presented for the normal displacement w, and the moments along x and y directions, M x

and My. These moments are related to displacement function by

(21)

In solving equations (16), the Gauss-Jordan method [8] is employed using the largest
element of the submatirx under consideration at each stage of operation to preserve the
better numerical accuracy.

Case 1. Simply supported square plate under uniform pressure

In this case (Fig. 6), as discussed previously in Problem Formulation section, y is set to be
zero and f3 is made to be sufficiently large for all edges. Two different values of f3 are used
and the results along the line y = b/2 are presented in Table 2. It is seen from this Table
that the difference between the results corresponding to f3h2

/ D = 102 and 104 is about
1 per cent. Therefore, it may be appropriate to say that numerical results are not so sensitive
to the magnitude ofartificial parameters adopted. Presented also in this Table for the purpose
of comparison are the Navier solutions as reported in Ref. [6].
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q = constant
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Table 2. Comparison of present results and Navier
solutions[6] (shown in parentheses) for a simply
supported square plate under uniform pressure q
(Fig. 6), hill function of order n = 4 and total number
of meshes m, = m2 = 6 are used, y = b12, v = 0·3

f3h 2

D

(a) Deflection wDlqa4

(0'002107 0·003556 0,004062)
10 2 0'002132 0·003584 0·004092
104 0'002107 0·003555 0·004062

(b) Moment along x - direction M xlqa2

(0'030547 0·044137 0'047886)
102 0·031978 0·044875 0·048422
104 0·031874 0·044757 0·048310

(c) Moment along y - direction M y lqa 2

(0,026200 0·042425 0'047886)
102 0·026853 0'042972 0'048422
104 0·026781 0·042870 0·048310

Case 2. Uniformly loaded square plate with one edge built in and three otherssimply supported

This case is shown in Fig. 7. In computation, y = 0 and fJ is adjusted to be large enough
for all three simply supported edges; both y and fJ are assigned sufficiently large for the
clamped edge. The present results using two different sets of values for fJ and y along with
series solutions as given in Ref. [6] are tabulated in Table 3.

Table 3. Comparison of present results and series solutions[6] (shown in paren
theses) for a uniformly loaded square plate with on edge built in and three

others simply supported (Fig. 7), n = 4, m, = m2 = 6, v = 0·3

f3h 2
.L w Mx My My

D D x=y= al2 x =y = al2 x =y= al2 x= al2,y = a

(0.0028qa4 ID 0'034qa4 0'039qa2 -0'084qa2)
102 102 0'0028qa4 ID 0'035qa2 0'040qa2 -0'079qa2

102 104 0'0028qa4 1D 0'034qa4 0'040qa2 -0'079qa2
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Case 3. Uniformly loaded square plate with one edge free and three others simply supported

This situation is sketched in Fig. 8. The artificial spring parameters are arranged as

q = constant
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k---- 0 .1
Fig. 8

follows: }' = 0 and P is set to be sufficiently large for all simply supported edges while
{1 }' = 0 for the free edge. The present results together with series solutions[6] are displayed
in Table 4.

The numerical results in each case involving solving 81 x 81 matrix take about 80 seconds
of PDP-lO CPU time.

Table 4. Comparison of present results and series solutions[6] (shown in paren
theses) for a uniformly loaded square plate with one edge free and three

others simply supported (Fig. 8), n = 4, 111\ = III, = 6, \I 0·3

f3h 2
Wmax (,Wx)m.x My

D x= a/2,y a x= a/2,y= a x y=a/l

(0'0 1286qa4 / D 0'112qa' 0'080qa' O'039qa2
)

102 0'01289q04/ D 0·1 14qa2 0'081qa 2 O'040qa2

104 0'01285qa4 /D 0'114qa 2 0'081qa 2 0'040qa2
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DISCUSSION AND CONCLUSIONS

Hill functions which are constructed on the basis of Legendre polynomials have been
used as coordinate functions. Excellent results are obtained for deflection function and
quite acceptable solutions are also produced for bending moments.

The reasoning of being able to yield good accuracy of numerical results by utilizing hill
functions is probably from the fact that the unusual manner in which these functions are
constructed. Each portion of hill functions is formed independently on the local coordinate
system and, by so doing, this enables them to be constructed very accurately, or say,
coefficients of hill functions as well as their corresponding derivatives can be calculated with
very good precision.

Other factors which may also affect the accuracy of results are the number of meshes and
the order of hill functions selected. In view of the nature of hill functions that they have
continuous derivatives only up to the order of n - 2, better results for bending moments in
these case problems may also be obtained if higher order hill functions are employed; for
plate problems considered herein, hill function of order n = 6 may very well serve this
purpose.

It may be noted that since hill functions are extended over only a portion of the entire
domain of the given problem, and the calculations are carried out interval by interval, the
entire solution procedure described herein is sometimes referred to as finite element method
[3, 4].

On the treatment of boundary conditions, one of the most popular techniques is the
method of Lagrange multipliers which has been used in Ref. [5] to treat axisymmetric circular
plate problems. In application of this method to the problems discussed in this paper,
extra equations for boundary conditions will inevitably be introduced, the number of which
will depend upon the total number of boundary points encountered. When the number of
boundary points become large enough, this may cause a computer storage problem. On the
other hand, the method of artificial parameters does not create any extra equations. Once
the magnitudes of these parameters, which are not so sensitive to the numerical results
obtained, have been determined, various boundary conditions can be quite well contained
without giving any additional burden on the computer storage. Considering this important
advantage, the method of artificial parameters should deserve more attention in its applica
tion to a variety of practical problems.

Finally, it may be concluded here that the hill function approach does indeed provide
very good numerical results and also is quite economical in its application. Hence, it is
recommended here that more research on its improvement as well as on its application to a
wide range of problems should be pursued.
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